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ABSTRACT

In the design phase of a system, how does a design engineer or

manager choose between a subsystem with .990 reliability and a more

costly subsystem with .995 reliability? When is the increased cost

justified?

High reliability is not necessarily an end in itself but may be

desirable in order to reduce the expected cost due to subsystem

failure. However, this may not be the wisest use of funds since

the expected cost due to subsystem failure is not the only cost

involved. The subsystem itself may be very costly. We should not

consider either the cost of the subsystem or the expected cost due

to subsystem failure separately but should minimize the total of

the two costs, i.e., the total of the cost of the subsystem plus

the expected cost due to subsystem failure.

This final report discusses the Combined Analysis of Reliability,

Redundancy, and Cost (CARRAC) methods which were developed under
Grant Number NAG3-1100 from the NASA Lewis Research Center. CARRAC

methods and a CARRAC computer program employ five models which can

be used to cover a wide range of problems. The models contain an

option which can include repair of failed modules.

ASSUMPTIONS AND NOTATION

In this paper assume perfect switching devices (if needed) of

negligible cost and independence of the subsystem modules.

NOTATION

n

k

r

r$

c I

c 2

c 3

c 4

c6

number of modules in the subsystem

minimum number of good modules for the subsystem to be good

reliability of the whole system for other than failure of the

subsystem

reliability of the subsystem

loss due to failure of the subsystem

loss due to subsystem output at v c (for models 3, 4, and 5)

cost of a one module subsystem capable of full output

cost of a module in a k-out-of-n:G subsystem when k is fixed

(see later discussion)

cost to repair a module



g(k) function which relates cost of subsystem to the number of

Vc

P

q
C

To

#r

a r

modules in the subsystem

fraction of subsystem output necessary so that the mission is

not a failure

probability that a module is good

probability that a module fails or l-p

the total of the cost of the subsystem itself plus the expect-

ed loss due to subsystem failure

failure rate of a module (models 4 and 5 and repairs)

mission time

the mean time to repair a module

the standard deviation of the time to repair a module

INTRODUCTION

Since expected value is an important ingredient in our quest for

finding the best subsystem, consider the expected cost due to

subsystem failure, denoted as E{cost due to subsystem failure). As

with all expected values, it depends upon both the dollar cost and

the probability of its occurrence. Let c I be the cost due to

failure of the subsystem, including all costs incurred by subsystem

failure (but not the cost of the subsystem itself). This number

could be the entire cost of the main system (or even greater) if

failure of the subsystem resulted in failure of the main system.

In other instances c I would be less than the cost of the main sys-

tem, e.g., failure of the subsystem resulted in only a partial

failure of the main system.

Now the expected cost due to subsystem failure is c I times the

probability that this cost will be experienced. The only time that

this cost will be experienced is if both the subsystem fails and

the main system does not fail. If the main system fails, then we

will not experience a subsystem failure. For example, if we're

considering a power subsystem in a rocket, the rocket may explode

on the launch pad due to a fuel problem. Even if the power subsys-

tem would have failed in flight, we would not experience this

failure. Let r be the reliability of the main system (for other

than failure of the subsystem) and let r s be the reliability of the

subsystem. [Note that Pr means "probability of". We will also use

the fact that Pr(A and B) = Pr(A_B) = Pr{A)Pr{BIA).] Then

E{cost due to subsystem failure) = cIPr{subsystem failure_main

system good)= cIPr(subsystem failurelmain system good) Pr(main

system good) = c1(l-rs)r= rc1(l-rs).

We can minimize this expected cost by building a subsystem with an

extremely low probability of failure (high reliability). However,
it is not clear that we should build the most reliable subsystem

possible since this will minimize only the expected cost due to

subsystem failure but does not consider the cost of building the

subsystem. We should not consider the two costs separately. W_ee
therefore minimize the total of the two costs, i.e., the total of



the cost of the subsystem plus the expected cost due to subsystem
failure. The total cost to be minimized is

C m cost of the subsystem + E{cost due to subsystem failure)

= cost of the subsystem + rc1(l-rs) (i)

In minimizinq cost C we see that we are balancinq the cost of the

subsystem and the expected cost due to subsystem failure.

SELECTING THE BETTER SUBSYSTEM

Suppose that we are considering two subsystems. Subsystem i, which

costs $200 has a .97 reliability. Subsystem 2, with a cost of

$i00, has a .94 reliability. Without further analysis, there is no

clear "best" subsystem and the choice is often based upon the

amount budgeted for the subsystem.

Assume that the two subsystems under consideration will be part of

a main system which has a reliability (exclusive of the subsystem

under consideration) of r = .96. We'll further assume that failure

of the subsystem will result in a cost of c I = $i0,000. Let us

first compare the E{cost due to subsystem failure) for each of the

two subsystems.

For subsystem i,

E{cost due to subsystem failure) = rciPr{subsystem failure)

= rc1(l-rsl )
= .96x$10,000x.03 = $288.

For subsystem 2,

E(cost due to subsystem failure = rc1(l
.96x$i01 irs_)576.= O00x. 06

Subsystem 2 has a higher expected cost than subsystem i. However,

since 2 is also less expensive, we need to compare the overall

expected cost, C, for 1 and for 2.

For subsystem i,

CSl = $200 + $288 = $488.

For subsystem 2,

Cs2 = $I00 + $576 = $676.

Since Csl < Cs2, we select subsystem 1 over subsystem 2.

For further information on expected values or on selecting the best

subsystem, see [3].



K-OUT-OF-N:G SUBSYSTEMS

In this article we'll direct our attention to a specific type of

subsystem, called a k-out-of-n:G subsystem. Such a subsystem has n

modules, of which k are required to be good for the subsystem to be

good. As an example consider the situation where the engineer has

a certain power requirement. He may meet this requirement by

having one large power module, two smaller modules, etc. The

number of modules required is called k. For example, the engineer

may decide that k = 4. Then each module is 1/4 of the full

required power. Therefore, the subsystem must have 4 or more

modules for the full required power. The number of modules used in

the subsystem is called n. For example, an n = 6 and k = 4

subsystem would have 6 modules each of 1/4 power and thus would

have the output capability of 1.5 times the required power. The

engineer chooses n and k. Selection of the different values of n

and k results in different subsystems, each with different costs

and reliabilities. Since each n and k yields different subsystems

with different costs, we can choose the subsystem (the n and k)
which will minimize cost C.

MODEL 1

The simplest k-out-of-n: G model is one where the modules are

independent and all have common probability of being good p and

common probability of failure q = l-p. Let X count the number of

good modules. Now

E{cost due to subsystem failure) = rc I Pr{subsystem failure)

k-1

x-0

Recall that C = cost of subsystem + E{cost due to subsystem

failure). We therefore need to also consider the cost of the

subsystem. First consider a simple situation where k is fixed.

Here we are free to choose n. Then n-k will be the redundancy or

number of spares in the subsystem. If each module costs c4, then

the cost of subsystem = nc 4. Using this with (2) we obtain

C = cost of subsystem + E{cost due to subsystem failure)

k-1

x'O

We wish to find the n which minimizes cost C.

The author has written a program (QuickBASIC 4.5) called CARRAC

to find the n which minimizes C. Additionally this program will,
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if you desire, graph C as a function of either p or c I. CARRAC

will plot the best subsystems (i.e. the ones with the lowest C's)

over ranges of p or c I. This allows you to not only select the

best subsystem for a particular value of p or c I but also to view

what happens to C for nearby values of p or c I.

As an example, consider the situation when k = i, where only one

module is required to be operational for the subsystem to be

operational. The reliability of this sinqle module is estimated

to be .95 (p = .95). Let the reliability of the system for other

than failure of the subsystem be .9, (r = .9). The cost of one

module is 1 (c 4 = I) million dollars (throughout the remainder of

the paper all costs will be in millions of dollars). The cost due

to failure of this subsystem is i0 (c I = I0).

Figure 1 shows a plot of C for p

ranging from .79 to .99 and n's

of 1 through 4. When the

reliability of a single module

p = .95, n = 1 has the lowest
value of C. Therefore the best

subsystem in this case is one

with no spares. We see from

figure 1 that the n = 1

subsystem (no spares) has the

lowest value of C for any p >

.87. If p < .87, then n = 2

(one spare) has the lowest value

of C. For p < .79, we would

view the graph over the range of

p < .79.

m i

C1 • 10

3.43 c.oo

3.14 ..............................

C Z .SS

Z._. ....... . ............

Figure 1

ODL"L 1I1- . CI - 1
C1 = 5_D M" I

11.1S I1- l --

B,6S N- I ooo

Z_ _....;....
._mJOO .01Gll .O'JOO ,_ .I$TOqP .llgO0 .91_ .'JQIOO ._ .9794 .9904

IP

Figure 2

the n = 2 subsystem is best.

redundancy (n=3) is required.

(n=l) is required.

Now suppose instead that c I

(cost due to failure of the

subsystem) is 50. Figure 2

shows the plot of C for c I = 50.
We first note that if p = .95,

then the n = 2 subsystem is the

best. Comparing figures 1 and 2

(at p = .95) we see that the

larger value of c I (in figure 2)

requires a larger value of n.

This principle holds in general.

If the cost of subsystem

failure increases then more

redundancy is required. If .83

< p < .98, figure 2 shows that

If p is below .83 then more

If p > .98, then no redundancy



MODEL 2

If, in model i, we are also free to choose k in our subsystem,

then we have model 2. Let c 3 be the cost of a subsystem

consisting of exactly one module. Further suppose that the cost

of a subsystem with exactly k modules is c_ g(k). Here g(k) is
the factor which measures the (generally) increased cost of

building a subsystem consisting of k smaller modules rather than

one large module. If g(k) = 1 for all k, then a subsystem of k

modules costs the same as a subsystem consisting of a single

module. Any g(k) may be used. For example, if a subsystem of 2

smaller modules costs 4 times as much as a single module

subsystem then g(2) = 4. Therefore this subsystem would cost c 3

g(k) = c 3 g(2) = 4c 3. If a subsystem of 3 smaller modules costs

7 times as much as a single module subsystem then g(3) = 7.

Other values for g(k) may be defined in a similar manner.

Therefore, in the above example, g(1) = i, g(2) = 4, g(3) = 7,
etc. We also assume that each module in the subsystem costs

c3g(k)/k , which is i/k of the total cost for k modules. Since we
have a total of n modules in the subsystem, then the cost of the

subsystem = nc3g(k)/k. Using this with (2) we obtain

C = cost of subsystem + E(loss due to subsystem failure)

k-1

x-0

For any particular situation with given values of ci, c 3, r, p

and g(k) we use CARRAC to select the n and k to minimize C as

given above. There are two options for g(k) built into CARRAC.

You may choose either g(k) = (l+b)g(k-l) or g(k) = k(i/k) c, where

you are free to set b or c.

If you believe that the cost of building a subsystem of k modules

increases (or decreases) linearly with k, then you would choose

the first option g(k) = (l+b)g(k-l), with b > 0 (b < 0). For

example, if building a subsystem of two smaller modules costs 20%

more than building a single module subsystem, 3 modules costs 20%

more than a subsystem of two modules, etc., then let b = .2. If

you believe that the cost of building a subsystem is

exponentially proportional to the number of modules in the

subsystem then you would choose the second option g(k) = k(I/k) c.

For example, consider building a space electrical power

subsystem. A rough rule of thumb says that the cost of smaller

modules for a space electrical power subsystem is proportio_al to

the electrical power raised to the .7, i.e., g(k) = k(I/k)".

Therefore, a subsystem consisting._f a single module capable of

full power costs c3g(1) = c31(i/i) = 1.0c 3. A subsystem



consisting of 2 modules, each of 1/2 nPOW%r,costs c3g(2) =
c32(i/2)"= 1.23c 3 to build, etc. An = and k = 2 subsystem,

(one having 3 modules each of 1/2 power) costs nc 3 g(k)/k =

3c3(i/2)'°/2 = 3c3xi.23/2 = 1.85c 3 to build.

As an example of model 2,

suppose we are building a space

electrical power subsystem. The

cost due to subsystem failure,

ci, is 240. Let the reliability
of the system for other than

failure of the subsystem be .9

(r = .9). Suppose that the cost

of building a single module

capable of full power is 1 (c3 =

I). Using the rule of thumb

stated above, we use the option

for g(k) with c = .7. All of
the above values are entered
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into CARRAC as parameters. An

estimate of p, the reliability of an individual module, is .96.

If we are unsure of this estimate, we can use CARRAC to view

(figure 3) the best subsystems over p ranging from .89 to .99.

From figure 3, at p = .96, the n = 2, k = 1 subsystem is best

(lowest value of C). If p < .95, the n = 4, k = 2 subsystem is
best. Note this is a flatter curve over the range of p,

indicating a low value for C over a wide range of p.
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For the same example, suppose we

wish to view what happens to C

as c I varies. Figure 4 (from

CARRAC) shows, if c I is below

310, then the n = 2, k = 1

subsystem is best. However, for

310 < c I < 400, the n = 5, k = 3

subsystem is the best. For c I >

400 the n = 4, k = 2 subsystem

is the best. This type of

analysis could be used whenever

you are unsure of c I and wish to

consider results over a range of

values.

MODEL 3

Figure 5 shows the loss due to subsystem failure, where v is the

ratio of the actual output of the subsystem to the specification

output. If v drops below some critical value Vc, the mission is

a complete failure and the loss is c I. However, if v is at v¢,



then the loss is only c2. As v
increases above Vc, this loss
decreases until there is no
loss at full output.

Although h is linear in figure
5 other loss functions, e.g.,
a decreasing multi-step
function, are appropriate. If
h(v) = a - av, v c < v < i, a =

cz/(l-Vc) , (I) becomes

Loss

i

i

!

i : /- h(v)

.................... I....... (Device

V Fraction)

Loss Function for Model 3

F1gure 5

x<kv c

k-1

•  x o_x
x_kv c

The third term on the rhs is expected loss due to partial failure

of the subsystem. Again we can find, by means of CARRAC, the n

and k which minimize C.

MODEL 4

Suppose in model 3 (with c I = c 2) that mission time is also

important. If modules fail exponentially with failure rate l,

then the probability of a module still operating successfully at

time t is exp(-It). Let f(x,t) be the joint probability density

function of x successes (n-x failures)and time t. Note that

g(x) is the probability that , at time To, exactly x modules will

be operating successfully.



f(t, x)

=n(nxl ) [exp(-it) ]X[l-exp(-It) ]n-x-llexp[-it] [exp(-l(To-t) ]x

_ n ! [exp(-XT0)] x lexp(-it) [l-exp(-it)] n-x-1
x ! (n-x-l) !

0<t <T o , x=0,1,...,n-l.

%

Now g(x) =[ f(t, x) dt

0

=(n) [exp(_iT0)]x [l_exp(_iT0)]n-x x=0,1, ...,n-i
&--l

with g(n) =exp [-IT 0] n

If the output fraction is v c at the start of the mission, our

loss is c 2. As v increases above v¢, then this loss decreases
until there is no loss at full output. With output at or above

vc, losses decrease with increasing time until there is no loss

beyond mission time T o. Additionally, for any given t, h(v,t)

decreases as v increases above v c.

Consider now a general loss function h(v,t) [not necessarily the

one illustrated by figure 6]. Again, for a given t, h takes on

values only for v = x/k. Now (i) becomes

C=nc3g(k) Ik+r_ [h(x/k,t) f(x,t) dt.

(3)
m

Let h(x/k, t)=d (x/k)_bj tJ.
s

Then, after integrating, (3) becomes

k-I

m n-x-1

i ) [i (i+I) ] -(j-l)

J

[l-exp[-_(i+l)To]]_w, ( J )[_(i+l)]J-WTJ -w
w=O j W

(4)
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Figure 6

We wish to find the n and k which minimize C. Minimizing C in

(4) is appropriate for any loss function, h (), of the form

given in (3). Using the loss function given in f_gure 6, for 0

x < kVc, d(x/k) = I, m = i, b 0 = c 2 and b I = - c2T 0 • For ky_ S x

S k-i we have d(x/k) = 1 - x/k, m = i, b 0 = a and b I = -aT 0 where

a = c2(l-Vc) "I with 0 < v c < i.

Let w1(x) = (n)(n-x)exp[-iTo]Xl

n-x-i

W2(X)= _ (-l)i(n-x-l)[l(i+l)]-1[l-exp[-l(i+l)To ]i-o i
n-x-I

i=0

[l-exp [-l (i+i) TO] -l (i+I) Toexp [-I (i+i) To]] .

I0



Using (4) we obtain

x<kvc

C=nc3g(k) /k+r _ clw I (x) [w2 (x) -Tolw3 (x)
X=0

k-i

xakv c

[l-x/k] aw I (x) [w2 (x) -T_lw3 (x) ].

MODEL 4 APPLICATIONS

Model 4 might reasonably be

applied to non-recoverable

systems which, at the end of

their service life, have no

intrinsic or salvage value or

which are prohibitively

expensive to recover. Examples

include undersea sonar systems

anchored in deep water,

instrument/telemetry packages

located in remote regions or

communications satellites in

geosynchronous orbit. For a
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geosynchronous communications

satellite a number of subsystems could be chosen as an example.

Let us examine the satellite power system which can be divided

into smaller identical modules. We again use the rule of thumb

which says that the cost of a space power subsystem is

propor._onal to the electrical power raised to the .7 (g(k) =
k(i/k)" ). Suppose that the mission life is 7 years and the

reliability of the satellite (exclusive of the power subsystem)

over the mission life is .90. Because the satellite needs power

for stationkeeping, computers and cooling, at least 10% of the

specification power is needed for the satellite to survive.

Therefore, v c is 0.i. The satellite generates $2 million per

month revenue. In the event of satellite failure, a new

satellite could be launched within two years at a cost of $115

million. Therefore c I (or cz) = 163 (115 plus 48 in lost

revenue). Here we will assume that revenue is roughly

proportional to power, i.e., if a module of the power subsystem

fails, then one or m_re channels are no longer available. We

estimate _ as 3.5(10" 6) and again use CARRAC to view C over a

range of _ from i(i0" ) to66(i0" ). Figure 7 shows the 5 best

subsystems. For _ < 4_i0" ) the n = 2, k = 1 subsystem is

optimal. For _ > 4(10 ), the n = 3, k = 1 subsystem is optimal.

II



MODEL 5

Suppose we have a situation similar to

model 4 but now assume a loss of c I if

the output fraction from the subsystem

is below.v c anytime during the life of
the misslon.

Model 5 could be applied to

recoverable systems, systems which

have inherent salvage value or manned

systems. Examples include manned

aircraft or spacecraft, recoverable

undersea vehicles or spacecraft.

Model 5 implies that if the output

fraction of the subsystem falls below

the critical value v c, something

catastrophic will occur, such as loss

of the whole system or loss of life.

With these systems, loss or

significant degradation of a critical

subsystem might cause loss of the

craft and occupants.

by figure 8.

T o

Time

...

vt)

V frock)

///L.
v_

Loss Function for Model 5

Figure 8

An example of such a loss function is given

With this loss function, for x < kv c, b 0 = c 2 and b I = 0 and for

kVc.1< x < k-l, we have d(x_k) = 1 - x/k, m = i, b 0 = a and b I = -
aT 0 where a = c 2 (i - v¢) with 0 < v c < i.

Using (4)

Use of CARRAC is applicable x_ view C over a range of either _ 0

C=nc3g(k) /k+r _ clg(x)
x'O

k-I

x> kv c

[1-x/k] aw I (x) [w2 (x) -Tolw) (x) ].

Repairability

Since we are considering repairs, we must now consider the

useful time of the subsystem or the mission time, T o . Therefore

p, the probability that a module is good, is a function of T O.

12



If we assume that failures occur at random, i. e. exponentially,

then p =exp (-_Tq), where i is the failure rate. We further
assume that repairs are equivalent to replacement, i. e., a

repair to a module will result in a module as good as new. We
also assume that the time to repair is normally distributed, with

an estimated mean, #r and standard deviation a r.

For all repair situations, analysis has been done in CARRAC by

means of simulation. For this reason, if you have a situation

where repair is an option, the analysis to find the optimal

subsystem may require considerable computer time. The required

time depends upon both the subsystems being considered and the

speed of the computer. If you are running the analysis for a

particular subsystem, e. g., n = 7 and k = 4, the amount of time

required for simulating repairs is usually quite short, in the

range of a minute or so. However, if you request a search and

graphical analysis, then the simulation may require several

hours. CARRAC also allows you to choose low, medium or high

resolution for the simulation. High resolution has the most

accurate results but is also the slowest. Medium and low are

faster but with correspondingly less accurate results. You might

consider low resolution for your initial searches and increase

the resolution as you approach the optimum.

Repair: models 1 and 2

The scenarios for models 1 and 2 are identical. Since we are

using simulation, we have a number of trials. Consider the first

trial. If we let s be the number of good modules in the

subsystem at a given time, then s = n at the beginning of the

mission. If a module fails, then s = n-l. If s < k, then the

subsystem fails and we incur a cost of rc I (due to the loss of

the entire subsystem). If s _ k ,we initiate repair on the first

module and a cost of c6(the cost of repairing one module) is

incurred (Again, the amount of time required for repair is a

normally distributed random variable with mean _r and standard

deviation at). If the failed module is repaired before another

module fails, then our total cost up to this time is c 6. If

another module fails before repair is completed on the first

module, then s = n-2. If s < k, then the subsystem fails and

we incur a cost of rc I (due to the loss of the entire subsystem).

Therefore, our total cost for the first trial is rc I + c 6. If s

k, we initiate repair on the second module and incur another

cost of c 6. If, throughout the entire mission s _ k, then the

subsystem has not failed and our total cost involves only repair

costs, the number of failed modules times c 6. If, however, at

some time during the mission s < k, the subsystem has failed and

we incur a cost of rc I due to failure of the subsystem.

Therefore our total cost for the first trial is rc I plus the

number of failed modules times c 6. We repeat this a large number

of times (depending upon the level of resolution chosen) and

average our costs over all trials. The cost C is given by

13



C m cost of the subsystem + E{cost due to subsystem failure}

+ E(cost of repair}.

Repair: models 3,4 and 5

The situation for model 3 differs in that we allow for partial

failure of the subsystem, according to figure 5. We assume that

complete failure of the subsystem results in a loss of rc I ,

regardless of the time (into the mission) at which complete

failure of the subsystem occurs. For model 4 (see fig. 8), we

assume that the cost of complete failure of the subsystem, rc I,

is weighed by the proportion of the mission time over which

complete failure occurs. For example, if the mission time is

I000 hours and complete failure of the subsystem occurs at 900

hours, the cost of complete failure is .I rc I.

Let's consider how these costs are calculated.

If, in the first trial, s _ k throughout the entire mission ,

then the subsystem has not failed, even partially, and our total

cost involves only repair costs. Therefore our total cost for

the first trial is the number of failed modules times c 6. If s

kv¢ throughout the entire mission , then the subsystem has not

completely failed and our total cost involves only repair costs

and the cost due to partial failure (which is weighed by the

amount of time that the subsystem is in the particular state of

partial failure). Therefore our total cost for the first trial

is the number of failed modules times c6 plus the costs

associated with partial failure. If, however, s < kv¢ at some

time during the mission , the subsystem has failed and we incur a

loss due to complete failure of the subsystem. Models 3 and 4

differ here in the loss assigned to the complete failure of the

subsystem, E(cost due to subsystem failure}.

For model 3, the loss assigned to complete failure of the

subsystem is rc I. Therefore our total cost for the first trial

is rc% plus the number of failed modules times c 6 plus the costs
assoclated with partial failure. We repeat this a large number

of times and average our costs over all trials.

For model 4, the loss assigned to complete failure of the

subsystem is rc I weighed by the proportion of mission time

remaining. Therefore our total cost for the first trial is rc I

weighed by the proportion of mission time remaining plus the

number of failed modules times c+ plus the costs associated with

partial failure. We repeat this a large number of times and

average our costs over all trials.

Therefore, for either models 3 or 4 , the cost C is given by

C m cost of the subsystem + E(cost due to subsystem failure}

+ E(cost of repair} + E(cost due to partial subsystem failure}.
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We remark that, if we allow repairs in model 3 and consider the

mission time, then models 3 and 5 are identical.

CARRAC

It is anticipated that the CARRAC program (written in QuickBASIC)

will become available in the future through NASA's Computer

Software Management and Information Center (COSMIC).

SUMMARY

Table 1 contains a summary of the five models which can be

applied in a redundancy cost analysis.

Model 1

Model 2

Model 3

Model 4

Model 5

Table I

Redundancy Cost Models Considered in this Paper

Simplest cost model. The subsystem consists of n

modules, of which k are required for success of the

mission. If less than k modules are good, a loss of c I

occurs. In model I, k is fixed.

Same as model 1 except k may also vary. The

g(k) cost function is also available to be

used where increased redundancy brings in

more (non-linear) cost.

Model 3 expands on models 1 and 2. Linear (or other)

loss functions are utilized. If less than k modules

are good, some loss will occur but not necessarily the

entire loss of c I. The loss which occurs depends upon

some critical output fraction v c.
Model 4 considers time in the loss function. Modules

in the subsystem fail exponentially with rate I.

Model 5 handles situations where output fraction below

v c causes a loss which is not time dependent, e.g.,

manned space missions where loss of a major portion of

a critical subsystem may cause loss of life.
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